104 research outputs found

    Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)

    Get PDF
    A tritium (3H) profile was constructed in a long-screened well (LSW) of the Fontainebleau Sands Aquifer (France), and the data were combined with temperature logs to gain insight into the potential effects of the ambient vertical flow (AVF) of water through the well on the natural aquifer stratification. AVF is commonly taken into account in wells located in fracture aquifers or intercepting two different aquifers with distinct hydraulic heads. However, due to the vertical hydraulic gradient of the flow lines intercepted by wells, AVF of groundwater is a common process within any type of aquifer. The detection of 3H in the deeper parts of the studied well (approximate depth 50m), where 3H-free groundwater is expected, indicates that shallow young water is being transported downwards through the well itself. The temperature logs show a nearly zero gradient with depth, far below the mean geothermal gradient in sedimentary basins. The results show that the age distribution of groundwater samples might be biased in relation to the age distribution in the surroundings of the well. The use of environmental tracers to investigate aquifer properties, particularly in LSWs, is then limited by the effects of the AVF of water that naturally occurs through the wel

    Quantification of 37Ar emanation fractions from irradiated natural rock samples and field applications.

    Get PDF
    Underground-produced 37Ar can be used for underground nuclear explosions (UNE) detection and for groundwater dating. The quantification of the emanation, that is the fraction of activity produced in the rock that escapes to the pore space, is essential for predicting the background activity expected in natural environments. We propose an experiment in which artificial CaCO3 powder and natural rock particles are irradiated with neutrons in a routinely operated medical cyclotron, whose energy spectrum is experimentally measured. The produced activity was quantified and compared with the emanated activity to determine the emanating fraction. The results showed consistent and reproducible patterns with a dominance of the recoil process at small scales (<2 mm). We observed emanation values ≀1% with a dependency on the grain size and the inner geometry of particles. Soil weathering and the presence of water increased the recoil emanation. The atoms produced that were instantaneously recoiled in the intra- or inter-granular pore space left macroscopic samples by diffusion on timescales of days to weeks (Deff = 10-12 - 10-16 m2 s-1). This diffusive transport determines the activity that prevails in the fluid-filled pore space accessible for groundwater or soil gas sampling

    A New Method of Measuring 81Kr and 85Kr Abundances in Environmental Samples

    Full text link
    We demonstrate a new method for determining the 81Kr/Kr ratio in environmental samples based upon two measurements: the 85Kr/81Kr ratio measured by Atom Trap Trace Analysis (ATTA) and the 85Kr/Kr ratio measured by Low-Level Counting (LLC). This method can be used to determine the mean residence time of groundwater in the range of 10^5 - 10^6 a. It requires a sample of 100 micro-l STP of Kr extracted from approximately two tons of water. With modern atmospheric Kr samples, we demonstrate that the ratios measured by ATTA and LLC are directly proportional to each other within the measurement error of +/- 10%; we calibrate the 81Kr/Kr ratio of modern air measured using this method; and we show that the 81Kr/Kr ratios of samples extracted from air before and after the development of the nuclear industry are identical within the measurement error

    Tracer Applications of Noble Gas Radionuclides in the Geosciences

    Full text link
    The noble gas radionuclides, including 81Kr (half-life = 229,000 yr), 85Kr (11 yr), and 39Ar (269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving deeper circulation of fluids in the Earth's crust and mantle also are within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods

    Stellar 36,38^{36,38}Ar(n,Îł)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,Îł)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,Îł)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT∌47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    Using 18O/2H, 3H/3He, 85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria)

    Get PDF
    Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 km2 respectively are characterised for the first time by measuring the combination of ή18O/ή2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/2010. The timescales of groundwater recharge have been characterised by 131 ή18O measurements of well and surface water sampled on a seasonal basis. Most monitoring wells show a seasonal variation or indicate variable contributions of the main river Mur (0–30%, max. 70%) and/or other rivers having their recharge areas in higher altitudes. Combined ή18O/ή2H-measurements indicate that 65–75% of groundwater recharge in the unusual wet year of 2009 was from precipitation in the summer based on values from the Graz meteorological station. Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. A boron–nitrate differentiation plot shows more frequent boron-rich water in the more urbanised Grazer Feld and more frequent nitrate-rich water in the more agricultural used Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban sewer water. Several lumped parameter models based on tritium input data from Graz and monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) for the Mur-water itself between 3 and 4 years in this area. Data from ή18O, 3H/3He measurements at the Wagna lysimeter station supports the conclusion that 90% of the groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of 20 m) with relative thicker unsaturated zones. The young MRT of groundwater from two monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of modern concentrations in water and are therefore unsuitable for dating purposes. An enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer Feld suggest that waste water in contact with CFC-containing material above and below ground is the source for the contamination. The dominance of very young groundwater (<5 years) indicates a recent origin of the contamination by nitrate and many other components observed in parts of the groundwater bodies. Rapid measures to reduce those sources are needed to mitigate against further deterioration of these waters

    Ar-39 Detection at the 10^-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    Get PDF
    Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, has been applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope with an isotopic abundance of 8x10^-16. In addition to the superior selectivity demonstrated in this work, counting rate and efficiency of ATTA have been improved by two orders of magnitude over prior results. Significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors

    Atmospheric 81Kr as an integrator of cosmic-ray flux on the hundred-thousand-year timescale

    Get PDF
    The atmospheric abundance of 81Kr is a global integrator of cosmic rays. It is insensitive to climate shifts, geographical variations, and short-term solar cycle activity, making it an ideal standard to test models of cosmic-ray flux on the time scale of 105 years. Here we present the first calculation of absolute 81Kr production rates in the atmosphere, and a measurement of the atmospheric 81Kr/Kr abundance via the Atom Trap Trace Analysis method. The measurement result significantly deviates from previously reported values. The agreement between measurement and model prediction supports the current understanding of the production mechanisms. Additionally, the calculated 81Kr atmospheric inventory over the past 1.5 Myr provides a more accurate input function for radiokrypton dating
    • 

    corecore